Что такое ткани. Каковы особенности их строения в связи с выполняемыми функциями

Тканью называется группа клеток, сходных по происхождению, строению и приспособленных к выполнению определенных функций. Ткани возникли у высших растений в связи с выходом их на сушу и наибольшей специализации достигли у покрытосеменных. Важнейшими тканями растений являются образовательные, покровные, проводящие, механические и основные. Они могут быть простыми и сложными. Простые ткани состоят из одного типа клеток (например, колленхима), а сложные — из разных (например, эпидерма, ксилема, флоэма и др.).

Образовательные ткани, или меристемы, участвуют в образовании всех постоянных тканей растения. Главной особенностью клеток меристемы является способность к постоянному делению и дифференциации, т. е. превращению в клетки постоянных тканей. Однородные, плотно сомкнутые живые тонкостенные меристематические клетки заполнены густой цитоплазмой, имеют крупное ядро и мелкие вакуоли.

По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов (в почках), что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру обеспечивается вторичными меристемами — камбием и феллогеном.

По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркалярные) и раневые (травматические) меристемы.

Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей — эпидермис, перидерму и корку.

Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов. Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют водный и воздушный режим растения.

Перидерма, или пробка, — вторичная покровная ткань, сменяющая эпидермис у многолетних растений. Ее образование связано с деятельностью вторичной меристемы — феллогена (пробкового камбия), клетки которого делятся тангенциально и дифференцируются и центробежном направлении в пробку (феллему). а в центростремительном — в слой живых паренхимных клеток (феллодерму).

Клетки пробки пропитаны жироподобным веществом — суберином и не пропускают воду и воздух, поэтому содержимое клетки отмирает, и она заполняется воздухом. Многослойная пробка образует вокруг стебля своеобразный чехол, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в ней имеются особые образования — чечевички. Это разрывы в пробке, заполненные рыхло расположенными клетками.

Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают. На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой расте нию, чем одна только пробка.

Проводящие ткани служат для передвижения веществ в растении и являются главной составной частью ксилемы и флоэмы.

Ксилема — это главная водопроводящая ткань высших сосудистых растений. Она также участвует в транспорте минеральных веществ и запасании питательных соединений, выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды), древесинная паренхима и механическая ткань. Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые поровой мембраной. Ток жидкости по трахеидам медленный, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды. Сосуды — это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность.

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью н состоит из ситовидных трубок с кпеткамн-с путницами, лубяной паренхимы н лубяных волокон. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поверенные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и осуды, проходят по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы — проводящие пучки.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными чертами строения клеток механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают три вида механической ткани: колленхиму, склеренхиму, склереиды.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черенков листьев, а также окаймляет жилки в листьях двудольных.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растении и составляет их осевую опору.

Различают два типа склеренхимных клеток волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна).

Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточка вишни, сливы, абрикоса; они придают мякоти груш характерный крупитчатый характер.

Основная ткань, или паренхима, состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму) и водоносную паренхиму.

Клетки ассимиляционной ткани содержат хлоропласта и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

В клетках запасающей паренхимы откладываются белки, жиры, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы, агавы, алоэ) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для запасания воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2—3 тыс. л воды). У водных и болотный растений развивается особый тип основной ткани — воздухоносная паренхима или аэренхима. Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена.

У животных различают четыре типа тканей: эпителиальную, соединительную, мышечную и нервную.

Эпителиальная ткань, или эпителий, обычно имеет вид пласта клеток, покрывающего тело животного или выстилающем его внутренние полости. Через слой покровного эпителия многих животных происходит газообмен между организмом и окружающей средой. В то же время он защищает животное от проникновения извне вредных веществ и микроорганизмов и предохраняет его от потери веществ, необходимых для его жизнедеятельности (например, воды). В некоторых органах клетки эпителия вырабатывают тот или иной секрет; эпителий, содержащий секреторные клетки, именуется железистым.

Клетки эпителия прилегают друг к другу плотно или между ними имеются щели, по которым циркулирует тканевая жидкость. Межклеточное вещество, как правило, неразвито. Клетки эпителия почти всегда имеют одно ядро.

Пласты эпителия слагаются из клеток различной формы. 0 зависимости от числа слоев клеток в пласте эпителий бывает однослойным и многослойным. По форме клеток однослойный эпителий подразделяют на плоский, кубический и цилиндрический. В многослойном эпителии клетки основного слоя имеют обычно кубическую или цилиндрическую форму, вышележащие клетки несколько уплощены, а поверхностные становятся плоскими. Нередко наружные клетки ороговевают и отмирают. У большинства беспозвоночных животных эпителий покровов выделяет на поверхность плотную оболочку — кутикулу.

Соединительная ткань участвует в образовании связок и прослоек между органами, а также скелета многих животных. Некоторые виды этой ткани (кровь, лимфа) осуществляют перенос веществ по всему телу. Строение различных видов соединительной ткани разнообразно Но все они сходны в том, что клетки их выделяют межклеточное (основное) вещество. В одних типах ткани оно мягкое и может содержать коллагеновые (дающие при вываривании клей) или эластичные волокна, расположенные беспорядочно, параллельно друг другу (в сухожилиях) или крест-накрест (в фасциях). В других типах соединительной ткани межклеточное вещество прочное и плотное. Различают следующие основные виды соединительной ткани:

  • рыхлая волокнистая ткань слагается из редко расположенных звездчатых клеток, переплетающихся волокон и тканевой жидкости, заполняющей промежутки между клетками и волокнами; обнаруживается обычно в прослойках между органами;
  • плотная волокнистая ткань состоит в основном из пучков коллагеновых волокон. Аморфного межклеточного вещества мало, немногочисленные клетки расположены между пучками волокон. Такая ткань образует связки, сухожилия, глубокие слои кожи позвоночных животных;
  • хрящевая ткань состоит из округлых или овальных клеток, лежащих в капсулах среди мощно развитого плотного и твердого межклеточного вещества, которое обычно слагается из переплетения тонких волокон и основной бесструктурной

    субстанции. Межклеточное вещество в этой ткани эластичное при надавливании, гибкое и его легко разрезать; в нем нет кровеносных сосудов. Хрящи входят в состав скелета многих

    животных;

  • костная ткань отличается тем, что ее межклеточное вещество из-за отложения солей кальция приобретает твердость и содержит гаверсовы каналы с кровеносными сосудами и нервами. Костные клетки (остеоциты) располагаются в основном концентрическими рядами вокруг гаверсовых каналов и связаны между собой плазматическими отростками. Костная ткань свойственна позвоночным животным. Эта ткань образует кости;

  • мышечная ткань — основной элемент мышц животных. Ее клетки способны к обратимому сокращению под действием разных раздражителей, что обусловливает движение животных. Мышечная ткань слагается из отдельных мышечных волокон, в которых расположены тончайшие сократительные волоконца — миофибриллы.

Различают три типа мышечной ткани: скелетную (или поперечнополосатую), сердечную и гладкую.

Сокращение скелетных мышц осуществляется произвольно через посредство соматических нервов, в отличие от сердечной и гладких мышц, управляемых вегетативной нервной системой. Как следует из названия, скелетные мышцы прикрепляются к костям скелета; сердечная мышца образует основную массу ткани сердца, а гладкие мышцы — мышечные слои внутренних органов (пищеварительного тракта, кровеносных сосудов, матки, мочевого пузыря и др.); у низших многоклеточных животных гладкая ткань образует всю массу их мышц.

Скелетные мышцы состоят из пучков, образуемых множеством многоядерных волокон диаметром от 0,01 до 0,1 мм и длиной от 1 до 40 мм. Эти волокна, в свою очередь, состоят из более тонких мышечных фибрилл. При световой микроскопии они имеют поперечную исчерченность заключающуюся в правильном чередовании светлых и темных дисков. Каждая мышечная фибрилла состоит в среднем из 2500 протофибрилл, представляющих собой удлиненные полимеризованные молекулы белков миозина и актина. При сокращении мышечных волокон актиновые нити вдвигаются в промежутки между толстыми миозиновыми нитями. Причиной «скольжения» является химическое взаимодействие между актином и миозином в присутствии ионов Са2+ и АТФ.

Сердечная мышца также состоит из волокон, но обладает иными свойствами, что связано с ее структурой. Ее волокна расположены не параллельным пучком, а ветвями. Кроме того, соседние волокна соединены между собой конец в конец. Благодаря этому все волокна сердечной мышцы образуют единую сеть, хотя каждое волокно заключено в отдельную мембрану. Между волокнами, соединенными своими концами, образуется множество контактов, которые позволяют нервному импульсу поступать от одного волокна к другому. Вся сердечная мышца сокращается одновременно и также одновременно расслабляется.

Клетки гладких мышц лишены поперечной исчерченности, так как у них отсутствует упорядоченное расположение нитей актина и миозина. Клетки гладких мышц веретенообразные, длиной около 0,1 мм, с одним ядром в центре.

Источником энергии для мышечного сокращения служат АТФ, креатинфосфат, а также — при интенсивной мышечной работе — запасы углеводов в форме гликогена и жирные кислоты.

Скелетные мышцы произвольного действия способны к быстрым сокращениям, развивают большую мощность, потребляют при работе много энергии, быстро утомляются. В отличие от скелетных, гладкие мышцы непроизвольного действия обладают медленной реакцией, способны к поддержанию длительного сокращения с очень малой затратой энергии.

Следует дополнить, что скелетные мышцы позвоночных состоят из волокон по меньшей мере двух типов — «быстрых» и «медленных». «Быстрые» волокна содержат меньше миоглобина и называются белыми, а «медленные», с большим количеством миоглобина, — красными. Мышца может состоять только из «быстрых», только из «медленных» волокон или из тех и других.

Нервная ткань выполняет функции восприятия, переработки, хранения и передачи информации, поступающей как из окружающей среды, так и изнутри организма. Деятельность нервной системы обеспечивает реакцию организма на различные раздражения и координацию работы разных органов животных.